29 MAR 2012 by ideonexus

 Why Traveling at the Speed of Light Slows Down Time

the precise time difference between stationary and moving clocks depends on how much farther the sliding clock's photon must travel to complete each round-trip journey This in turn depends on how quickly the sliding clock is moving—from the viewpoint of a stationary observer, the faster the clock is sliding, the farther the photon must travel to the right. We conclude that in comparison to a stationary clock, the rate of ticking of the sliding clock becomes slower and slower as it moves fas...
  1  notes

An elegant explanation in physical terms of photons and the distances they travel.

29 MAR 2012 by ideonexus

 Example of Relativity

Imagine that George, who is wearing a spacesuit with a small, red flashing light, is floating in the absolute darkness of completely empty space, far away from any planets, stars, or galaxies. From George's perspective, he is completely stationary, engulfed in the uniform, still blackness of the cosmos. Off in the distance, George catches sight of a tiny, green flashing light that appears to be coming closer and closer. Finally, it gets close enough for George to see that the light is attache...
  1  notes

All motion is relative.